화학공학소재연구정보센터
Applied Surface Science, Vol.255, No.2, 545-547, 2008
In vivo bone regeneration using a novel porous bioactive composite
Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bonemorphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and ( 3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications. (c) 2008 Elsevier B.V. All rights reserved.