화학공학소재연구정보센터
Applied Surface Science, Vol.255, No.4, 1126-1130, 2008
ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons
Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale'' imaging several mm(2) using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs+ pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation. (c) 2008 Published by Elsevier B.V.