화학공학소재연구정보센터
Applied Surface Science, Vol.255, No.5, 2442-2448, 2008
Accelerating calcium phosphate growth on NaOH-treated poly-(lactic-co-glycolic acid) by evaporation-induced surface crystallization
Poly(lactic-co-glycolic acid) (PLGA) is a promising material for the regeneration of bone tissue, but its surface properties are not optimal for the application. Coating the surface of PLGA with a continuous layer of calcium phosphate is an effective approach to address the limitation. Current coating techniques for PLGA require immersion in supersaturated calcium phosphate solutions for days to weeks. In this study, we report a simple technique to accelerate the coating process to only 2 h immersion in supersaturated solutions. PLGA pellets were first treated with NaOH to increase their hydrophilicity. The NaOH-treated PLGA pellets were repeatedly dipped in a supersaturated calcium phosphate solution and dried in air. After 10 times of the dip-and-dry treatment, a layer of calcium phosphate crystallites uniformly covered the surfaces of the pellets. After the crystallite-covered pellets were immersed in the supersaturated solution for 2 h, about 5-mu m thick continuous calcium phosphate coatings formed on the surfaces. The dip-and-dry technique was also applied on a variety of metals and porous structures. An evaporation-induced surface crystallization process was suggested as the mechanism for the dip-and-dry treatment. (C) 2008 Elsevier B. V. All rights reserved.