Applied Surface Science, Vol.255, No.9, 5062-5066, 2009
Luminescent characteristics of CaTiO3:Pr3+ thin films prepared by pulsed laser deposition method with various substrates
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin films grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (D-1(2)-> H-3(4)) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3: Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates. (c) 2008 Elsevier B.V. All rights reserved.