Applied Surface Science, Vol.255, No.10, 5363-5367, 2009
Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property
Nano-sized zinc oxide (ZnO) powders were prepared via a thermal plasma process from micro-sized zinc powder while oxygen was employed as a reaction gas. Two different carrier gases, oxygen and argon, were evaluated and the flow rate of the reaction gas was controlled. The photo-catalytic activities of ZnO powders were evaluated by measuring the degradation of methylene blue (MB) in water under the UV and visible region. The prevailing goal of this study is to improve the photo-catalytic activity of nanosized ZnO powders for the removal of environmental pollutants. The ZnO nanopowders were characterized by XRD, SEM, BET, and UV-vis spectrometry. Their mean crystallites sizes ranged from 26.5 nm to 48.6 nm. It was confirmed by a XRD analysis that the ZnO nanopowders had a high quality wurtzite structure. SEM and XRD results show that the size of the particles synthesized increased with an increase of the flowrate of the oxygen reaction gas. The powder obtained using the argon carrier gas with higher oxygen reaction gas flow rate was more rod-shape. The MB decomposition rates of the obtained ZnO nanopowders were studied under the UV and visible region. In the UV region, synthesized ZnO could decompose MB as well as commercial ZnO. However, in the visible region, the MB decomposition rate obtained using ZnO was much higher than that by commercial ZnO. (C) 2008 Elsevier B. V. All rights reserved.