Automatica, Vol.44, No.8, 2099-2107, 2008
On the Lyapunov-based adaptive control redesign for a class of nonlinear sampled-data systems
Stabilization of the exact discrete-time models of it class of nonlinear sampled-data systems, with an unknown parameter. is addressed. Given a Lyapunov-based continuous-time adaptive controller that ensures some stability properties for the closed-loop system, a sufficient condition For the design of high order discrete-time controllers is given. The stability analysis is carried Out considering the truncated Fliess series of the Lyapunov difference equation. Due to the appearance of power terms of the unknown parameter, the problem is reparameterized in a convex-like form and an estimation law for the new unknown parameter is derived with no need of overparametrization or projection techniques. Then, assuming appropriate conditions hold, high order controllers can be designed. The boundedness of the extended state vector is ensured under some conditions, for a sufficiently small sampling period. It is shown how increasing the controller order can improve system performance. (C) 2008 Elsevier Ltd. All rights reserved.