화학공학소재연구정보센터
Biomacromolecules, Vol.10, No.9, 2451-2459, 2009
Surface Plasmon Resonance Studies of Pullulan and Pullulan Cinnamate Adsorption onto Cellulose
Surface plasmon resonance studies showed pullulan cinnamates (PCs) with varying degrees of substitution (DS) adsorbed onto regenerated cellulose surfaces from aqueous solutions below their critical aggregation concentrations. Results on cellulose were compared to PC adsorption onto hydrophilic and hydrophobic self-assembled thiol monolayers (SAMs) on gold to probe how different interact-ions affected PC adsorption. PC adsorbed onto methylterminated SAMs (SAM-CH3) > cellulose > hydroxyl-terminated SAMs (SAM-OH) for high DS and increased with DS for each surface. Data for PC adsorption onto cellulose and SAM-OH surfaces were effectively fit by Langmuir isotherms; however, Freundlich isotherms were required to fit PC adsorption isotherms for SAM-CH3 surfaces. Atomic force microscopy images from the solid/liquid interfaces revealed PC coatings were uniform with surface roughnesses <2 nm for all surfaces. This study revealed hydrogen bonding alone could not explain PC adsorption onto cellulose and hydrophobic modification of water-soluble polysaccharides was a facile strategy for their conversion into surface modifying agents.