화학공학소재연구정보센터
Biomass & Bioenergy, Vol.32, No.9, 892-895, 2008
Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides
Biodiesel is one of the new possible substitutes of regular fuel for engines and is produced from different vegetable oils or animal fats. The main reaction involved is the transesterification of triglycerides into esters. When an acid oil, such as spent or waste oil, is used, the amount of free fatty acids range from 3% to 40%, and another reaction takes place simultaneously with the transesterification, the direct esterification of the free fatty acid. In this work, the direct esterification reaction of triglycerides to biodiesel was studied and the effects of the main variables involved in the process, reaction temperature, amount of catalyst, initial amount of free fatty acid and the molar ratio alcohol/oil, were analyzed. For this investigation, we employed a model acid oil produced by mixing pure oleic acid with refined sunflower oil. Ethanol was used in the experiments instead of methanol since it is less toxic and safer to handle. Sulfuric acid was employed as catalyst because of its advantages compared with conventional homogeneous catalysts (NaOH). It was found that ethanol and sulfuric acid were suitable to perform not only the transesterification reaction but also the direct esterification reaction to increase biodiesel production of the process. (c) 2008 Elsevier Ltd. All rights reserved.