Biochemical and Biophysical Research Communications, Vol.371, No.4, 793-798, 2008
Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis
Human PTK7 is a defective receptor protein tyrosine kinase and its expression is upregulated in various cancers including colorectal carcinomas. To determine whether PTK7 functions in angiogenesis, we have expressed and purified the extracellular domain of PTK7 (soluble PTK7; sPTK7) as a decoy receptor to counteract the effects of endogenous PTK7. Capillary-like tube formation of human umbilical vascular endothelial cells (HUVECs) was accompanied by modulation in the PTK7 mRNA level. Neutralization of endogenous PTK7 with sPTK7 inhibited vascular endothelial growth factor (VEGF)-induced tube formation, migration, and invasion of HUVECs in a dose-dependent manner. sPTK7 reduced VEGF-induced phosphorylation of focal adhesion kinase (FAK) and paxillin, relocalization of paxillin to focal adhesions, and formation of stress fibers. Moreover, sPTK7 inhibited VEGF-incluced angiogenesis in vivo. Knockdown of PTK7 using siRNA also inhibited VEGF-induced tube formation, supporting that sPTK7 specifically blocks function of the endogenous PTK7. These results demonstrate that PTK7 plays an important role not only in tube formation, migration, and invasion of endothelial cells but also in angiogenesis. (c) 2008 Elsevier Inc. All rights reserved.