Biochemical and Biophysical Research Communications, Vol.372, No.3, 400-406, 2008
Saturation transfer difference NMR studies on substrates, and inhibitors of succinic semialdehyde dehydrogenases
Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD(+)/NADP(+) indicate differential affinity in agreement with the respective cosub-strate properties. Epitope mapping by STD points to a strong interaction of the NAD(+)/NADP(+) adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD(+)/NADP(+) adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes. (C) 2008 Elsevier Inc. All rights reserved.
Keywords:succinic semialdehyde dehydrogenase;saturation transfer difference NMR;ligand-observed NMR;substrate form specificity;aldehyde versus gem-diol;epitope mapping