화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.374, No.1, 101-105, 2008
Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes
The biological mechanism of a recent discovered association of type 2 diabetes with the ACAA-insertion/deletion polymorphism at the 3'UTR of the IGF2R gene has remained unclear. A very recently emerging novel polymorphic control layer by microRNAs (miRNAs) makes it possible to elucidate this issue. In this Study, a prediction by web tools MicroInspector and miRanda demonstrated that DNA sequence polymorphism (DSPs) ACAA-insertion/deletion in IGF2R 3'UTR is located within the hsa-miR-657 and hsa-miR-453 binding sites. And luciferase reporter assay revealed that hsa-miR-657 acts directly at the 3'UTR of the IGF2R. Furthermore, ACAA-deletion exerted a further repression Compared with ACAA-insertion, indicating that hsa-miR-657 regulates IGF2R gene expression in a polymorphic Control manner. Importantly, we also demonstrated that hsa-miR-657 can translationally regulate the IGF2R expression levels in Hep G2 cells. Thus, our findings testify the possibility that the ACAA-insertion/deletion polymorphism may result in the change of IGF2R expression levels at least in part by hsa-miR-657-mediated regulation, contributing to the elucidation for the pathogenesis of type 2 diabetes and raise the possibility that miRNAs or in combination with functional DNA sequence polymorphism may be Valuable in the treatment of human type 2 diabetes. (C) 2008 Elsevier Inc. All rights reserved.