화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.378, No.3, 404-408, 2009
The non-neuronal syntaxin SYN-1 regulates defecation behavior and neural activity in C-elegans through interaction with the Munc13-like protein AEX-1
We have previously shown that the AEX-1 protein, which is expressed in postsynaptic muscles, retrogradely regulates presynaptic neural activity at the Caenorhabditis elegans neuromuscular junctions. AEX-1 is similar to vertebrate Munc13-4 protein, suggesting a function for vesicle exocytosis from a kind of cells. Compared to emerging evidences of the role of Munc13 proteins in synaptic vesicle release, however, the precise mechanism for vesicle exocytosis by AEX-1 and Munc13-4 is little understood. Here we have identified SYN-1 as a candidate molecule of AEX-1-dependent vesicle exocytosis from non-neuronal cells. The syn-1 gene encodes a C. elegans syntaxin, which is distantly related to the neuronal syntaxin UNC-64. The syn-1 gene is predominantly expressed in non-neuronal tissues and genetically interacts with aex-1 for presynaptic activity. However, the two proteins did not interact physically in our yeast two-hybrid system and mutational SYN-1 did not bypass the requirement of AEX-1 for the behavioral defects in aex-1 mutants, whereas mutant UNC-64 does in unc-13 mutants. These results suggest that a novel molecular interaction between the AEX-1 and syntaxin may regulate vesicle exocytosis for retrograde signal release. (C) 2008 Elsevier Inc. All rights reserved.