화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.383, No.4, 383-385, 2009
Can pancreatic duct-derived progenitors be a source of islet regeneration?
The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing beta-cells. The functional mass of beta-cells is decreased in type 1 diabetes, so replacing missing beta-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the beta-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding beta-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet beta-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the "gold standard" of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as an in vivo progenitor for pancreatic beta-cells has implications for a potentially important, expandable source of new islets for diabetic replenishment therapy. (C) 2009 Elsevier Inc. All rights reserved.