Biochemical and Biophysical Research Communications, Vol.389, No.3, 405-408, 2009
Ghrelin reverses experimental diabetic neuropathy in mice
Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin alpha, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder. (C) 2009 Elsevier Inc. All rights reserved.