화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.1, 104-109, January, 2010
Physical degradation of MEA in PEM fuel cell by on/off operation under nitrogen atmosphere
E-mail:
The durability of PEMFCs is one of the most important issues for application in automotive vehicles with a repeated start-up and shut-down system. The understanding of degradation phenomena such as causes, mechanisms and influence of working condition is essential to improving the performance and lifetime of PEMFC. We conducted on/off cyclic operation in a single cell configuration with ultra purity nitrogen gas to investigate the physical degradation of membrane electrode assembly (MEA). After on/off cycle operation for 100,000 cycles under different humid condition, the characteristics of the MEAs were examined by in situ and ex situ analyses techniques. The physical degradation of MEA by on/off cycling led to a change in the membrane-electrode interfacial structure, which is mainly attributed to the loss of cell performance.
  1. Gemmen RS, Johnson CD, J. Power Sources, 159(1), 646 (2006)
  2. Schmittinger W, Vahidi A, J. Power Sources, 180(1), 1 (2008)
  3. Marrony M, Barrera R, Quenet S, Ginocchio S, Montelatici L, Aslanides A, J. Power Sources, 182(2), 469 (2008)
  4. Liu D, Case S, J. Power Sources, 162(1), 521 (2006)
  5. Zhang S, Yuan X, Wang H, Merida W, Zhu H, Shen J, Wu S, Zhang J, International Journal of Hydrogen Energy, 34, 388 (2009)
  6. Taniguchi A, Akita T, Yasuda K, Miyazaki Y, International Journal of Hydrogen Energy, 33, 2323 (2008)
  7. Ferreira PJ, la O' GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA, J. Electrochem. Soc., 152(11), A2256 (2005)
  8. Stevens DA, Hicks MT, Haugen GM, Dahn JR, J. Electrochem. Soc., 152(12), A2309 (2005)
  9. Arico AS, Stassi A, Modica E, Ornelas R, Gatto I, Passalacqua E, Antonucci V, J. Power Sources, 178(2), 525 (2008)
  10. Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA, J. Power Sources, 163(1), 76 (2006)
  11. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C, J. Power Sources, 176(2), 444 (2008)
  12. Tang H, Qi ZG, Ramani M, Elter JF, J. Power Sources, 158(2), 1306 (2006)
  13. Baturina OA, Aubuchon SR, Wynne KJ, Chemistry Material, 18, 1498 (2006)
  14. Laconti AB, Hanmada M, Mcdonald RC, Handbook of fuel cells-fundamentals, technology, and application, Wiley & Sons, Ltd., Chapter, 49, 647 (2003)
  15. Sugawara S, Maruyama T, Nagahara Y, Kocha SS, Shinohra K, Tsujita K, Mitsushima S, Ota K, J. Power Sources, 187(2), 324 (2009)
  16. Mittal VO, Kunz HR, Fenton JM, J. Electrochem. Soc., 153(9), A1755 (2006)
  17. Collier A, Wang H, Yuan XZ, Zhang J, Wilkinson DP, International Journal of Hydrogen Energy, 31, 1838 (2006)
  18. Wu JF, Yuan XZ, Martin JJ, Wang HJ, Zhang JJ, Shen J, Wu SH, Merida W, J. Power Sources, 184(1), 104 (2008)
  19. Kocha SS, Handbook of fuel cells-fundamentals, technology, and application, Wiley & Sons, Ltd., Chapter, 43, 538 (2003)
  20. O’Hayre R, Cha SW, Colella W, Prinz FB, Fuel cell fundamentals, John Wiley & Sons, Ltd. (2006)
  21. Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531 (2001)
  22. Kong CS, Kim DY, Lee HK, Shul YG, Lee TH, J. Power Sources, 108(1-2), 185 (2002)
  23. Wahdame B, Candusso D, Francois X, Harel F, Pera MC, Hissel D, Kauffmann JM, International Journal of Hydrogen Energy, 32, 4523 (2007)
  24. Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis M, Stpierre J, Johnson MC, J. Electrochem. Soc., 144(11), 3845 (1997)
  25. Zhang JL, Xie Z, Zhang JJ, Tanga YH, Song CJ, Navessin T, Shi ZQ, Song DT, Wang HJ, Wilkinson DP, Liu ZS, Holdcroft S, J. Power Sources, 160(2), 872 (2006)