Biotechnology and Bioengineering, Vol.102, No.4, 988-994, 2009
Expanding Substrate Specificity of GT-B Fold Glycosyltransferase Via Domain Swapping and High-Throughput Screening
Glycosyltransferases (GTs) are crucial enzymes in the biosynthesis and diversification of therapeutically important natural products, and the majority of them belong to the GT-B superfamily, which is composed of separate N- and C-domains that are responsible for the recognition of the sugar acceptor and donor, respectively. In an effort to expand the substrate specificity of GT, a chimeric library with different crossover points was constructed between the N-terminal fragments of kanamycin GT (kanF) and the C-terminal fragments of vancomycin GT (gtfE) genes by incremental truncation method. A plate-based pH color assay was newly developed for the selection of functional domain-swapped GTs, and a mutant (HMT31) with a crossover point (N-kanF-669 hip and 753 bp-gtjE-C) for domain swapping was screened. The most active mutant HMT31 (50 kDa) efficiently catalyzed 2-DOS (aglycone substrate for KanF) glucosylation using dTDP-glucose (glycone substrate for GtfE) with k(cat)/K-m of 162.8 +/- 0.1 mM(-1) min(-1). Moreover, HMT31 showed improved substrate specificity toward seven more NDP-sugars. This study presents a domain swapping method as a potential means to glycorandomization toward various syntheses of 2-DOS-based aminoglycoside derivatives.
Keywords:natural product;antibiotics;glycosyltransferase;molecular evolution;domain swapping;high-throughput screening (HTS)