- Previous Article
- Next Article
- Table of Contents
Biotechnology and Bioengineering, Vol.103, No.6, 1049-1059, 2009
Kinetic Optimization of a Protein-Responsive Aptamer Beacon
Aptamers have been utilized as biosensors because they can be readily adapted to sensor platforms and signal transduction schemes through both rational design and selection. One highly generalizable scheme for the generation of the so-called aptamer beacons involves denaturing the aptamer with antisense oligonucleotides. For example, rational design methods have been utilized to adapt anti-thrombin aptamers to function as biosensors by hybridizing an antisense oligonucleotide containing a quencher to the aptamer containing a fluorescent label. In the presence of thrombin, the binding equilibrium is shifted, the antisense oligonucleotide dissociates, and the beacon lights up. By changing the affinity of the antisense oligonucleotide for the aptamer beacon, it has proven possible to change the extent of activation of the beacon. More importantly, modulating interactions between the antisense oligonucleotide and the aptamer strongly influences the kinetics of activation. Comparisons across multiple, designed aptamer beacons indicate that there is a strong inverse correlation between the thermodynamics of hybridization and the speed of activation, a finding that should prove to be generally useful in the design of future biosensors. By pre-organizing the thrombin-binding quadruplex within the aptamer the speed of response can be greatly increased. By integrating these various interactions, we were ultimately able to design aptamer beacons that were activated by threefold within 1 min of the addition of thrombin. Biotechnol. Bioeng. 2009;103: 1049-1059. (C) 2009 Wiley Periodicals, Inc.