- Previous Article
- Next Article
- Table of Contents
Chemical Physics Letters, Vol.479, No.4-6, 173-183, 2009
Specific ion adsorption at the air/water interface: The role of hydrophobic solvation
Classical force fields for molecular simulations of aqueous electrolytes are still controversial. We study alkali and halide ions at the air/water interface using novel non-polarizable force fields that were optimized based on bulk thermodynamics. In qualitative agreement with polarizable force-field simulations, ion repulsion from the interface decreases with increasing ion size. Iodide is even enhanced at the interface, which is rationalized by hydrophobic solvation at the interface, but exhibits a smaller surface propensity than in previous polarizable simulations. Surprisingly, lithium is less repelled than other cations because of its tightly bound hydration shell. A generalized Poisson-Boltzmann approach that includes ionic potentials of mean force from simulation almost quantitatively matches experimental interfacial tension increments for 1 molar sodium halides and alkali chlorides. We conclude that properly optimized non-polarizable force fields are transferable to interfacial environments and hold the potential for unravelling non-specific effects even in biological situations involving peptidic surfaces. (c) 2009 Elsevier B.V. All rights reserved.