Electrochimica Acta, Vol.54, No.9, 2404-2409, 2009
Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates. (C) 2008 Elsevier Ltd. All rights reserved.
Keywords:Oxygen reduction reaction;MoOx-Pt/C catalyst;TiOx-Pt/C catalyst;Nanoparticles;Acid solution