화학공학소재연구정보센터
Electrochimica Acta, Vol.54, No.18, 4321-4327, 2009
Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes
A study has been carried out of nanotubular anodic films formed on titanium at 20 V in fluoride/glycerol electrolyte, containing up to 50 vol.% water. Anodizing was terminated at a charge of 1 C cm(-2). Addition of water resulted in an increased current and significantly reduced tube length associated with increased oxygen gas evolution. Films formed in the absence of added water were amorphous by electron diffraction, whereas water addition also led to the formation of anatase and rutile. The barrier layer was relatively thin for electrolyte of low water content, due to either a voltage drop in the electrolyte close to the anode or to a change in the film composition affecting the electric field across the layer. Ribbing of the external walls of the nanotubes was more evident in the presence of water. It is suggested that dissolution of a fluoride-rich layer, which separates the nanotubes, accompanies the nanotube growth, with the dissolution allowing transient film formation at the external walls of the nanotubes when the residual layer is sufficiently thin. (C) 2009 Elsevier Ltd. All rights reserved.