Electrophoresis, Vol.29, No.16, 3436-3445, 2008
Poly(methyl methacrylate) microchip affinity capillary gel electrophoresis of aptamer-protein complexes for the analysis of thrombin in plasma
Thrombin generation in blood serves as an important marker for various hemostasis-related diseases and conditions. Analytical techniques currently utilized for determining the thrombin potential of patients rely primarily on the enzymatic activity of thrombin. Microfluidic-based ACE using fluorescently labeled aptamers as affinity probes could provide a simple and efficient technique for the real-time analysis of thrombin levels in plasma. In his study, aptamers were used for the analysis of thrombin by affinity microchip CGE. The CGE used a poly(methyl methacrylate) (PMMA) microfluidic device for the sorting of the affinity complexes with a linear polyacrylamide (LPA) serving as the sieving matrix. Due to the fact that the assay was run under nonequilibrium electrophoresis conditions, the presence of the sieving gel was found to stabilize the affinity complex, providing improved electrophoretic performance compared to free-solution electrophoresis. Two fluorescently labeled aptamer affinity probes, HD1 and HD22, which bind to exosites I and II, respectively, of thrombin were investigated. With an electric field strength of 300 V/cm, two well-resolved peaks corresponding to free aptamer and the thrombi n-aptamer complex were obtained in less than 1 min of separation time with a run-to-run and chip-to-chip reproducibility (RSD) of migration times <10% using both aptamers. HD22 affinity assays of thrombin produced baseline-resolved peaks with favorable efficiency due to its higher binding affinity, whereas HD1 assays showed poorer resolution of the free aptamer and complex peaks. HD22 was used in determining the level of thrombin in human plasma. Assays were performed directly on plasma that was diluted to 10% v/v. Thrombin was successfully analyzed by microchip CGE at a concentration level of 543.5 nM for the human plasma sample.