화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.6, 727-733, December, 2009
기포탑 반응기에서 반응 속도에 따른 침강성 탄산칼슘의 모폴로지 변화
Morphological Change of Precipitated Calcium Carbonate by Reaction Rate in Bubble Column Reactor
E-mail:
초록
슬러리 기포탑에서 침강성 탄산칼슘의 평균입도와 모폴로지의 변화에 대한 수산화칼슘의 농도(0.16~0.64 wt%), 총 부피유량(3~6 L/min) 및 이산화탄소의 부피분율(0.3~0.6)의 영향을 나타내었다. 실험에 사용한 반응기는 높이가 1.0 m, 직경이 0.11 m이고 중앙에는 직경 4 cm인 튜브가 들어있는 슬러리 기포탑이다. 반응 시간에 따른 수산화칼슘의 전화율을 구하기 위해 FT-IR을 이용하여 수산화칼슘과 탄산칼슘 함량비에 따른 검량곡선을 구하였다. 수산칼슘의 포화농도인 0.16 wt%에서 이산화탄소의 유량에 따른 침강성 탄산칼슘의 모폴로지를 살펴보면 반응 속도가 증가할수록 결정 크기는 증가하는 경향을 보이며 결정의 형태는 단일 결정으로 존재하는 입자들이 많아졌다. 또한 수산화칼슘의 농도가 증가할수록 결정 크기는 감소하지만 입자들간의 응집에 의해 탄산칼슘의 평균 입도는 증가하는 것을 확인하였다.
Effects of Ca(OH)2 concentration(0.16~0.64 wt%), total volumetric flow rate(3~6 L/min) and CO2 volume fraction(0.3~0.6) on morphology of the precipitated CaCO3 and the mean particle size of the precipitated CaCO3 were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor(0.11 m-ID×1.0 m-high) with a internal tube(0.04 m-ID×1.0 m-high). The calibration curve on the mass ratio of CaCO3 to Ca(OH)2 was obtained by FT-IR for the conversion of Ca(OH)2 with the reaction time. The reaction rate of Ca(OH) 2 increased with increasing the volumetric flow rate of CO2. From SEM images, the crystal size of CaCO3 increased with increasing the reaction rate in the saturated concentration of Ca(OH)2 (0.16 wt%). In addition, the crystal size of precipitated CaCO3 decreased with increasing the concentration of Ca(OH)2, but the mean particle size of precipitated CaCO3 increased with increasing the concentration of Ca(OH)2.
  1. Kang YC, Park J, Park SB, HWAHAK KONGHAK, 35(2), 319 (1997)
  2. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
  3. Kang YC, Park SB, HWAHAK KONGHAK, 35(6), 846 (1997)
  4. Matahwa H, Ramiah V, Sanderson RD, J. Cryst. Growth, 310, 4561 (2008)
  5. Ahn JH, Lee JS, Joo SM, Kim HS, Kim JK, Han C, Kim H, J. Korean Ceram. Soc., 39, 327 (2002)
  6. Park MJ, Ahn JH, Lee HL, Kim H, J. Korean Ceram. Soc., 38, 343 (2001)
  7. Han HK, Kim BM, Kim JA, Korean Chem. Eng. Res., 46(6), 1052 (2008)
  8. Lyu SG, Sur GS, Kang SH, HWAHAK KONGHAK, 35(2), 186 (1997)
  9. Park JW, Kim JS, Ahn JW, Han C, J. Korean Ind. Eng. Chem., 17(1), 67 (2006)
  10. Lyu SG, Park NK, Sur GS, Lee TJ, J. Korean Ind. Eng. Chem., 12, 174 (2000)
  11. Vagenas NV, Gatsouli A, Kontoyannis CG, Talanta, 59, 831 (2003)
  12. Xiao J, Zhu Y, Liu Y, Liu H, Zeng Y, Xu F, Wang L, Crystal Growth & Design, 8, 2887 (2008)
  13. Tong H, Ma W, Wang L, Wan P, Hu J, Cao L, Biomaterials, 25, 3923 (2004)
  14. Tsutsumi A, Nieh JY, Fan LS, Ind. Eng. Chem. Res., 30, 2328 (1991)
  15. Agnihotri R, Mahuli SK, Chauk SS, Fan LS, Ind. Eng. Chem. Res., 38(6), 2283 (1999)
  16. Legodi MA, Waal D, de Potgieter JH, Potgieter SS, Miner. Eng., 14, 1107 (2001)
  17. Legodi MA, Waal D, Potgieter JH, Society for applied spectroscopy, 55, 361 (2001)
  18. Agarwal P, Berglund Kris A, Crystal Growth & Design, 3, 941 (2003)
  19. Juvekar VA, Sharma MM, Chem. Eng. Sci., 28, 825 (1973)
  20. Park SS, "A Study on the Formation Reaction of Colloidal Calcium Carbonate", Ph. D. Dissertation, Inha Univ., Inchon, Korea (1989)
  21. Dasgupta D, Mondal K, Wiltowski T, Int. J. Hydrog. Energy, 33, 303 (2008)
  22. Wei SH, Mahuli SK, Agnihotri R, Fan LS, Ind. Eng. Chem. Res., 36(6), 2141 (1997)