Energy Conversion and Management, Vol.50, No.12, 3024-3034, 2009
Handling zone dividing method in packed bed liquid desiccant dehumidification/regeneration process
Dehumidifier and regenerator are the most significant components in liquid desiccant air-conditioning systems, in which air directly contacts liquid desiccant and heat and mass transfer process occurs between the two fluids. Heat transfer process and mass transfer process within dehumidifier/regenerator influence each other and should not be separately considered. Based on the previous reachable handling region analysis, a zonal method is proposed in present study. Four zones are divided in the psychrometric chart according to the relative position of inlet air to inlet desiccant including two dehumidification zones, zone A and zone D, and two regeneration zones, zone B and zone C. In zone A or C, mass transfer is key process, and counter-flow configuration has the best mass transfer performance and parallel-flow is the poorest in the same operating conditions. In zone B or D, heat transfer is governing process, parallel-flow has the best mass transfer performance and counter-flow is the poorest. in order to obtain better mass transfer performance, liquid desiccant should be cooled (in zone A) rather than air (in zone D) in dehumidifier, and liquid desiccant should be heated (in zone C) rather than air (in zone B) in regenerator. The divided zones and the corresponding zonal properties will be helpful to the design and optimization of dehumidifiers and regenerators. (C) 2009 Elsevier Ltd. All rights reserved.