화학공학소재연구정보센터
Enzyme and Microbial Technology, Vol.45, No.2, 80-87, 2009
Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8-21.8% of pretreated rice straw, which was less than the 23.1-26.5% of pretreated bagasse and the 21.5-24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g(-1) DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw: this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of beta-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin. (C) 2009 Elsevier Inc. All rights reserved.