화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.53, No.9, 1998-2011, 2008
Zeros and Poles of Linear Continuous-Time Periodic Systems: Definitions and Properties
The paper deals with definitions of zeros and poles and their features in finite-dimensional linear continuous-time periodic (FDLCP) systems under a harmonic framework. More precisely, system and transfer zeros and poles in the harmonic wave-to-wave sense are defined on what we call the regularized harmonic system operators and the harmonic transfer operators of FDLCP systems by means of regularized determinants; then their composition and properties related to system structures are examined via the Floquet theory and controllability/observability decompositions of FDLCP systems. The study shows that under mild assumptions, the harmonic transfer operators of FDLCP systems are analytic and meromorphic, on which zeros and poles are well-defined. Basic zero/pole relationships are established, which are similar to their linear time-invariant counterparts and in particular explicate some interesting harmonic wave-to-wave behaviors of FDLCP systems. The results are significant in analysis and synthesis of FDLCP systems when the harmonic approach is adopted.