화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.53, No.9, 2180-2185, 2008
Asymptotic Tracking for Uncertain Dynamic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure
The use of a neural network (NN) as a feedforward control element to compensate for nonlinear system uncertainties has been investigated for over a decade. Typical NN-based controllers yield uniformly ultimately bounded (UUB) stability results due to residual functional reconstruction inaccuracies and an inability to compensate for some system disturbances. Several researchers have proposed discontinuous feedback controllers (e.g., variable structure or sliding mode controllers) to reject the residual errors and yield asymptotic results. The research in this paper describes how a recently developed continuous robust integral of the sign of the error (RISE) feedback term can be incorporated with a NN-based feedforward term to achieve semi-global asymptotic tracking. To achieve this result, the typical stability analysis for the RISE method is modified to enable the incorporation of the NN-based feedforward terms, and a projection algorithm is developed to guarantee bounded NN weight estimates.