화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.21, No.4, 203-211, December, 2009
Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time
E-mail:
In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the 3rd power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.
  1. Bach A, Almdal K, Rasmussen HK, Hassager O, Macromolecules, 36(14), 5174 (2003)
  2. Boukany PE, Wang SQ, Wang X, J. Rheol., 53, 617 (2009)
  3. Doi M, J. Polym. Sci. B Phys. Ed., 18, 2055 (1980)
  4. Doi M, Edwards SF, Dynamics of Concentrated Polymer Systems. Part 4.- Rheological Properties. Trans. Faraday Soc II, 75, 38 (1979)
  5. Doi M, Edwards SF, The Theory of Polymer Dynamics, Oxford University Press, Oxford. (1986)
  6. Hassager O, Proc. XIVth Int. Congress on Rheology, NF01. (2004)
  7. Isaki T, J. Rheol., 47(5), 1201 (2003)
  8. Marrucci G, de Cindio B, Rheol. Acta, 19, 68 (1980)
  9. Marrucci G, Ianniruberto G, Macromolecules, 37(10), 3934 (2004)
  10. McLeish TCB, Larson RG, J. Rheol., 42(1), 81 (1998)
  11. Mead DW, Larson RG, Doi M, Macromolecules, 31(22), 7895 (1998)
  12. Menezes EV, Graessley WW, Polym. Phys., 20, 1817 (1982)
  13. Nielsen JK, Rasmussen HK, Hassager O, McKinley GH, J. Rheol., 50(4), 453 (2006)
  14. Nielsen JK, Rasmussen HK, Hassager O, J. Rheol., 52, 885 (2008)
  15. Nielsen JK, Rasmussen HK, J. Non-Newtonian Fluid Mech., 155, 15 (2008)
  16. Osaki K, Nishizawa K, Kurata M, Macromolecules, 15, 1068 (1982)
  17. Pearson DS, Kiss A, Fetters L, Doi M, J. Rheol., 33, 517 (1989)
  18. Takahashi M, Isaki T, Takigawa T, Masuda T, J. Rheol., 37, 827 (1993)
  19. Tapadia P, Wang SQ, Phys. Rev. Lett., 96, 016001 (2006)
  20. Wagner MH, Schaeffer J, J. Rheol., 36, 1 (1992)
  21. Wagner MH, Schaeffer J, J. Rheol., 37, 643 (1993)
  22. WAGNER MH, SCHAEFFER J, Rheol. Acta, 33(6), 506 (1994)
  23. Wagner MH, Rubio P, Bastian H, J. Rheol., 45(6), 1387 (2001)
  24. Wagner MH, Kheirandish S, Hassager O, J. Rheol., 49(6), 1317 (2005)