화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.21, No.4, 289-297, December, 2009
Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method
E-mail:
We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.
  1. Bakalis S, Karwe MV, Journal of Food Eng., 51, 273 (2002)
  2. Bravo VL, Hrymak AN, Polymer Eng. and Sci., 40, 525 (2000)
  3. Bravo VL, Hrymak AN, Wright JD, Polym. Eng. Sci., 44(4), 779 (2004)
  4. Fenner RT, Polymer, 18, 617 (1977)
  5. Griffith RM, Ind. Eng. Chem. Fundam., 1, 180 (1962)
  6. Ishikawa T, Kihara SI, Funatsu K, Polym. Eng. Sci., 40(2), 357 (2000)
  7. Ishikawa T, Amano T, Kihara SI, Funatsu K, Polym. Eng. Sci., 42(5), 925 (2002)
  8. Karwe MV, Jaluria T, Part A: Application, 17, 167 (1990)
  9. Khalifeh A, Clermont JR, J. Non-Newton. Fluid Mech., 126(1), 7 (2005)
  10. Kim N, Kim H, Lee J, Korea-Aust. Rheol. J., 18(3), 143 (2006)
  11. Kim N, Kim H, Lee J, Korea-Aust. Rheol. J., 18(3), 153 (2006)
  12. Kim SJ, Kwon TH, Adv. Polym. Technol., 15(1), 41 (1996)
  13. Kim SJ, Kwon TH, Adv. Polym. Technol., 15(1), 55 (1996)
  14. Kwag DS, Kim WS, Lee KS, Lyu MY, Proceeding of the second International Conference on Computational Heat and Mass Transfer, 22 (2001)
  15. Kwon TH, Joo JW, Kim SJ, Polymer Eng. and Sci., 34, 174 (1993)
  16. Lim JM, Han S, Jeon S, Woo D, Park GJ, Trans. KSAE, 7, 144 (1999)
  17. Zhu LJ, Narh KA, Hyun KS, Int. J. Heat Mass Transf., 48(16), 3411 (2005)
  18. Osswald TA, Menges G, Hanser Gardner Pubns., 129 (2007)
  19. Osswald TA, Hernandez-Ortiz JP, Hanser Gardner Pubns, 68 (2006)
  20. Sastrohartono T, Jaluria Y, Esseghir M, Sernas V, Int. J. Heat Mass Transfer, 38, 1957 (1994)
  21. Shearer G, Tzoganakis C, Polym. Eng. Sci., 40(5), 1095 (2000)
  22. Syrjala S, Numerical Heat Transfer, Part A, 35, 25 (1999)
  23. Syrjala S, Numerical Heat Transfer, Part A, 37, 897 (2000)
  24. Ye YS, Kim HB, Kim N, Lee JW, The Korean Society of Mechanical Engineers Part A, 29, 145 (2005)
  25. Youn BD, Choi KK, Computers and Structures, 82, 241 (2004)
  26. Yoshinaga M, Katsuki S, Miyazaki M, Liu LJ, Kihara SI, Funatsu K, Polym. Eng. Sci., 40(1), 168 (2000)