Industrial & Engineering Chemistry Research, Vol.47, No.19, 7465-7475, 2008
Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel-Bulkley fluids
A continuous-flow mixer was designed and built to study the mixing of xanthan gum solution, a pseudoplastic fluid possessing yield stress. The extent of flow nonideality was quantified using a dynamic model that incorporated two parameters: channeling and fully mixed volume in the vessel. Dynamic experiments were made using the frequency-modulated random binary input of a brine solution to determine the magnitude of nonideal flow parameters. The same experiments were simulated using a computational fluid dynamics (CFD) package (Fluent 6.2). CFD flow fields were used to obtain the system dynamic response to a tracer injection applied at conditions identical to the experimental ones. The extents of channeling and effective mixed volume were determined using the CFD model and then compared with the parameters obtained experimentally. Validated CFD flow fields enabled us to effectively monitor the effect of various operating conditions on flow nonideality, to relate flow pattern and cavern dimension to flow nonideality, to compare the efficiency of impellers, and to provide a pictorial synopsis of continuous-flow mixing operation.