화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.10, No.10, 4267-4283, 2009
Biodegradation of Poly(butylene succinate) Powder in a Controlled Compost at 58 degrees C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method
The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 degrees C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled "Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions-Method by analysis of evolved carbon dioxide-Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test". The evolved CO2 was trapped by an additional aqueous Ba(OH)(2) solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the C-14 radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO2 (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2.