화학공학소재연구정보센터
Journal of Applied Microbiology, Vol.105, No.4, 993-1001, 2008
Development and antifungal evaluation of a food-grade U-type microemulsion
Aims: Food-grade microemulsions have been of increasing interest to researchers as potential delivery systems for bioactive compounds. However, food-grade microemulsions are difficult to formulate and no microemulsion has been documented for antifungal purpose. The physicochemical characterization of a food-grade glycerol monolaurate (GML)/ethanol (EtOH)/Tween 80/potassium sorbate (PS)/water microemulsion system and the antifungal activities against Aspergillus niger and Penicillium italicum have been studied in this paper. Methods and Results: The influence of EtOH and PS on oil solubilization capability was clearly reflected in the phase behaviour of U-type microemulsion systems. One dilution-stable formulation ME (GML/EtOH/Tween 80/PS/water = 3 : 3 : 3.5 : 10.5 : 16) was selected. After 4 days of incubation, ME showed 80%A. niger growth inhibition at 0.2% and 72%P. italicum growth inhibition at 0.1%, respectively, and a delay of conidiation of 2 days compared with the control. In the antifungal activities of the microemulsion, GML and PS made major contributions with similar antifungal activities at a GML/PS weight ratio of 1: 3.5. Conclusions: Food-grade dilution-stable microemulsions prepared with GML as oil phase for antifungal purpose are feasible and solubilization of a hydrotrope contributes to the formation of microemulsions and enhanced antifungal activities. Significance and Impact of the Study: The present report represents the first to develop a food-grade microemulsion system for antifugal purpose.