Journal of Applied Microbiology, Vol.106, No.1, 49-56, 2009
Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising micro-organism for the bioremediation of aromatic compounds
The recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (P. haloplanktis TAC/tou) expressing toluene-o-xylene monooxygenase (ToMO) can efficiently convert several aromatic compounds into their corresponding catechols in a broad range of temperature. When the genome of P. haloplanktis TAC125 was analysed in silico, the presence of a DNA sequence coding for a putative laccase-like protein was revealed. It is well known that bacterial laccases are able to oxidize dioxygenated aromatic compounds such as catechols. We analysed the catabolic features, conferred by recombinant ToMO activity and the endogenous laccase enzymatic activity, of P. haloplanktis TAC/tou engineered strain and its ability to grow on aromatic compounds as sole carbon and energy sources. Results presented highlight the broad potentiality of P. haloplanktis TAC/tou cells expressing recombinant ToMO in bioremediation and suggest the use of this engineered Antarctic bacterium in the bioremediation of chemically contaminated marine environments and/or cold effluents. This paper demonstrates the possibility to confer new and specific degradative capabilities to a bacterium isolated from an unpolluted environment (Antarctic seawater) transforming it into a bacterium able to grow on phenol as sole carbon and energy source.
Keywords:Antarctic psychrophilic bacterium;aromatic compounds degradation;copper-inducible oxidase;marine bioremediation;Pseudoalteromonas haloplanktis TAC125