화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.110, No.4, 2094-2101, 2008
Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites
Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain-controlled parallel-plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape-memory polymer systems with adjustable switching temperatures. The solid-state, direct-current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. (C) 2008 Wiley Periodicals, Inc.