Polymer(Korea), Vol.34, No.1, 45-51, January, 2010
실리카 화합물을 함유한 PVA/PAM 전해질 막의 제조 및 특성과 직접메탄올 연료전지로의 응용
Preparation and Characterization of PVA/PAM Electrolyte Membranes Containing Silica Compounds for Direct Methanol Fuel Cell Application
E-mail:
초록
본 연구는 직접메탄올 연료전지에 적용하기 위하여 poly(vinyl alcohol)를 주쇄부로 하여 poly(acrylic acidco-maleic acid)(PAM)와 [3-(trihydroxysilyl)-1-propanesulfonic acid](THS-PSA)를 도입하여 열 가교된 막을 제조하였다. 제조된 막의 특성화를 평가하기 위하여 FT-IR, 열 중량분석, 함수율, 이온교환용량, 이온전도도, 메탄올 투과도 등의 측정을 실시하여 Nafion 115와 비교하였다. 제조된 막의 이온교환용량은 Nafion 115의 0.91 meq./g membrane보다 향상된 1.6∼1.8 meq./g membrane을 얻었다. 또한, 이온전도도의 경우 THS-PSA을 도입하여 Nafion 115(0.024 Sㆍcm^(-1))보다 우수한 0.042∼0.056 Sㆍcm^(-1)을 얻을 수 있었으며, 가교온도에 의하여 영향을 받는다는 것을 알 수 있었다. 또한, 메탄올투과도의 경우 PAM과 THS-PSA의 도입으로 인하여 이온교환용량 및 이온전도도가 증가한 반면에 메탄올투과도는 모든 막의 경우 Nafion 115의 경우보다 높은 메탄올투과도를 나타냄을 확인하였다.
This study focuses on the investigation of the possibility of the crosslinked poly(vinyl alcohol)
membranes with both poly(acrylic acid-co-maleic acid)(PAM) and 3-(trihydroxysilyl)-1-propanesulfonic acid(THS-PSA) for the direct methanol fuel cell application. In order to characterize the prepared membranes, the water content, the thermal gravimetric analysis, the ion exchange capacity, the ion conductivity and the methanol permeability measurements were carried out and then compared with the existing Nafion 115 membrane. The ion exchange capacity of the resulting membranes showed 1.6∼1.8 meq./g membrane which was improved than Nafion 115, 0.91 meq./g membrane. In the case of the proton conductivity, the THS-PSA introduced membranes gave more excellent 0.042∼0.056 Sㆍcm^(-1) than Nafion 115, 0.024 Sㆍcm^(-1). On the other hand, the methanol permeability was increased more than Nafion 115 for all the range of THA-PSA concentration.
Keywords:poly(vinyl alcohol);poly(acrylic acid-co-maleic acid);3-(trihydroxysilyl)-1-propanesulfonic acid;polymer electrolyte membrane;direct methanol fuel cell
- Delluca NW, Elabd YA, J. Polym. Sci., 44, 2001 (2006)
- Kim DH, Lee BS, Lee BS, Yoon SW, Rhim JW, Byun HS, Membrane Journal, 18, 336 (2008)
- Lee CH, Park CH, Lee YM, J. Membr. Sci., 313(1-2), 199 (2008)
- U. S. Department of Energy, Fuel Cell Handbook, 6th ed., B/T Books, Orinda, CA (2002)
- Moon GY, Rhim JW, Macromol. Res., 15(4), 379 (2007)
- Gao Y, Robertson GP, Guiver MD, Ean XG, Mikhailenko SD, Wang KP, Kaliaguine S, J. Membr. Sci., 227(1-2), 39 (2003)
- Cheon HS, Oh M, Hong SU, Membrane Journal, 13, 47 (2003)
- Jeong J, Yoon KS, Choi JK, Kim YJ, Hong YT, Membrane Journal, 16, 276 (2006)
- Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155 (1999)
- Cheon SW, Jun JH, Rhim JW, Membrane Journal, 13, 191 (2003)
- Kim DS, Guiver MD, Nam SY, Il Yun T, Seo MY, Kim SJ, Hwang HS, Rhim JW, J. Membr. Sci., 281(1-2), 156 (2006)
- Lin CW, Huang YF, Kannan AM, J. Power Sources, 164(2), 449 (2007)
- Kang MS, Choi YJ, Moon SH, J. Membr. Sci., 207(2), 157 (2002)
- Kim DS, Park HB, Rhim JW, Lee YM, Solid State Ion., 176(1-2), 117 (2005)
- Winston Ho WS, Sirkar KK, Membrane Handbook, Van Nostrand Reinhold, New York (1992)
- Kesting RE, Synthetic Polymeric Membranes, John Wiley & Sons, New York (1985)
- Kim DS, Park HB, Rhim JW, Lee YM, J. Membr. Sci., 240(1-2), 37 (2004)
- Kang MS, Kim JH, Won J, Moon SH, Kang YS, J. Membr. Sci., 247(1-2), 127 (2005)
- Lee YM, Park HB, Membrane Journal, 10, 103 (2000)
- Honma I, Nishikawa O, Sugimoto T, Nomura S, Nakajima H, Fuel Cells, 2, 52 (2002)