화학공학소재연구정보센터
Journal of Crystal Growth, Vol.311, No.7, 1658-1661, 2009
MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 X 10(6) cm(2)/V s
Two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, grown by molecular beam epitaxy (MBE), has been a favorite template for numerous research in a field of quantum physics during last several decades. While in the early stages the main efforts were devoted to fabricate extremely high-mobility 2DEG by concentrating on the purity of the grown material, nowadays it became clear that the further progress in the field requires new approaches of heterostructures design and the growth procedure. Here we report on the MBE growth of AlGaAs/GaAs heterostructures using a short-period superlattice (SPSL) doping instead of the more standard n-AlGaAs doping. Such doping process allows the use of a low AlAs mole fraction spacer which, in turn, leads to a lower background of impurities as well as a better interface quality. Mobility exceeding 35 x 10(6) cm(2)/V S was measured in samples with doping introduced on both sides of a quantum well (QW) where the 2DEG was imbedded in. Most importantly the SPSL doping allows introducing "correlations" between ionized donors and allows controlling the potential disorder landscape that governs the appearance of various fractional quantum Hall states. (C) 2008 Elsevier B.V. All rights reserved.