화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.166, No.2-3, 821-829, 2009
Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions
Montmorillonite-supported magnetite nanoparticles were prepared by co-precipitation and hydrosol method. The obtained materials were characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the magnetite nanoparticles without and with montmorillonite support are around 25 and 15 nm, respectively. The montmorillonite-supported magnetite nanoparticles exist on the surface or inside the interparticle pores of clays, with better dispersing and less coaggregation than the ones without montmorillonite support. Batch tests were carried out to investigate the removal mechanism of hexavalent chromium [Cr(VI)] by these synthesized magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption data of unsupported and clay-supported magnetite nanoparticles fit well with the Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite nanoparticles showed a much better adsorption capacity per unit mass of magnetite (15.3 mg/g) than unsupported magnetite (10.6 mg/g), and were more thermally stable than their unsupported counterparts. These fundamental results demonstrate that the montmorillonite-supported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution. (C) 2008 Elsevier B.V. All rights reserved.