Journal of Materials Science, Vol.43, No.15, 5368-5375, 2008
Wear behavior of Al-Cu and Al-Cu/SiC components produced by powder metallurgy
In the present study, the dry sliding wear behavior of some powder metallurgy (P/M) Al-Mg-Cu alloys with different weight percentage of Cu (0, 1, 2, 3, 4, and 5 wt%) and corresponding metal matrix composites reinforced with 5 or 10 vol% silicon carbide particles (SiC) have been carried using pin-on-disk apparatus. The tested specimens were tested against hardened steel disk as a counter face at room conditions (similar to 20 degrees C and similar to 50% relative humidity). The normal load was 40 N and sliding velocity of counter face disk was 150 rpm (0.393 m/s) and total testing time of 60 min, which corresponds to a distance of 1414 m. Generally, both hardness and wear resistance were enhanced by the addition of Cu and/or SiC to the Al-4 wt% Mg alloy. The formations of mechanically mixed layer (MML) as a result of material transfer from counter face disk to the samples and vice versa were observed in all tested specimens.