Korean Journal of Chemical Engineering, Vol.27, No.2, 596-601, February, 2010
Transfer rate measurement of lysozyme by liquid-liquid extraction using reverse micelles with dense CO2
E-mail:
Lysozyme was extracted from aqueous solution into i-octane using reverse micelles in the presence of pressurized CO2. A squat vessel with two independent stirrers was used to measure the mass transfer of the lysozyme across a planar interface. Mass transfer coefficient, k(L) of the lysozyme from the aqueous to the organic phase was measured at selected ionic strengths, pH, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant concentrations, temperatures and pressurized CO2. The mass transfer rate of lysozyme was higher in high temperature (318 K) and pressure (20MPa). pH of 9 in aqueous phase showed highest mass transfer rate of lysozyme. The application of pressurized CO2 markedly increased the mass transfer rate of lysozyme comparing to conventional non-pressurized system.
Keywords:Lysozyme;Reverse Micelle;Mass Transfer;Pressurized CO2;Sodium Bis(2-ethylhexyl) Sulfosuccinate (AOT)
- Pires MJ, Airesbarros MR, Cabral JM, Biotechnol. Prog., 12(3), 290 (1996)
- Lu Q, Chen H, Li K, Shi Y, Biochem. Eng. J., 1, 45 (1998)
- Nagayama K, Matsuura S, Doi T, Imai M, J. Mol. Cat. B, 4, 25 (1998)
- Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713 (1996)
- Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
- Dekker M, Van’t Riet K, Bijsterbosch BH, Fijneman P, Hilhorst R, Chem. Eng. Sci., 45, 2949 (1990)
- Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145, 33 (1991)
- Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195 (1994)
- Jarudilokkul S, Paulsen E, Stuckey DC, Bioseparation, 9, 81 (2000)
- Zhang HF, Lu J, Han BX, J. Supercrit. Fluids, 20(1), 65 (2001)
- Housaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., 24(1), 102 (2007)
- Lewis JB, Chem. Eng. Sci., 3, 248 (1954)
- Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
- Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
- Nishii Y, Nii S, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 32(2), 211 (1999)
- Chun BS, Wilkinson GT, Sep. Sci. Technol., 37(14), 3323 (2002)
- Yoon HH, Korean J. Biotechnol. Bioeng., 5, 411 (1990)
- Kinugasa T, Tanahashi SI, Takeuchi H, Ind. Eng. Chem. Res., 30, 2470 (1991)
- Lye GJ, Asenjo JA, Pyle DL, in Separation Biotechnology, Volume 3, Pyle DL, Ed., Royal Society of Chemistry, UK (1994)
- Kim H, Baek K, Kim BK, Shin HJ, Yang JW, Korean J. Chem. Eng., 25(2), 253 (2008)
- Chun BS, Wilkinson GT, Ind. Eng. Chem. Res., 34(12), 4371 (1995)
- Asai S, Hatanaka J, Uekawa Y, J. Chem. Eng. Jpn., 16, 463 (1963)
- Park SW, Chun BS, Lim GT, Korean Chem. Eng. Res., 28, 594 (1990)
- Schneider GM, in Supercritical Fluids Fundamentals for Application, Kiran E, Sengers JMHL, Eds., Kluwer Academic Publishers, Boston, USA (1994)