화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.2, 596-601, February, 2010
Transfer rate measurement of lysozyme by liquid-liquid extraction using reverse micelles with dense CO2
E-mail:
Lysozyme was extracted from aqueous solution into i-octane using reverse micelles in the presence of pressurized CO2. A squat vessel with two independent stirrers was used to measure the mass transfer of the lysozyme across a planar interface. Mass transfer coefficient, k(L) of the lysozyme from the aqueous to the organic phase was measured at selected ionic strengths, pH, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant concentrations, temperatures and pressurized CO2. The mass transfer rate of lysozyme was higher in high temperature (318 K) and pressure (20MPa). pH of 9 in aqueous phase showed highest mass transfer rate of lysozyme. The application of pressurized CO2 markedly increased the mass transfer rate of lysozyme comparing to conventional non-pressurized system.
  1. Pires MJ, Airesbarros MR, Cabral JM, Biotechnol. Prog., 12(3), 290 (1996)
  2. Lu Q, Chen H, Li K, Shi Y, Biochem. Eng. J., 1, 45 (1998)
  3. Nagayama K, Matsuura S, Doi T, Imai M, J. Mol. Cat. B, 4, 25 (1998)
  4. Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713 (1996)
  5. Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
  6. Dekker M, Van’t Riet K, Bijsterbosch BH, Fijneman P, Hilhorst R, Chem. Eng. Sci., 45, 2949 (1990)
  7. Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145, 33 (1991)
  8. Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195 (1994)
  9. Jarudilokkul S, Paulsen E, Stuckey DC, Bioseparation, 9, 81 (2000)
  10. Zhang HF, Lu J, Han BX, J. Supercrit. Fluids, 20(1), 65 (2001)
  11. Housaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., 24(1), 102 (2007)
  12. Lewis JB, Chem. Eng. Sci., 3, 248 (1954)
  13. Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
  14. Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
  15. Nishii Y, Nii S, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 32(2), 211 (1999)
  16. Chun BS, Wilkinson GT, Sep. Sci. Technol., 37(14), 3323 (2002)
  17. Yoon HH, Korean J. Biotechnol. Bioeng., 5, 411 (1990)
  18. Kinugasa T, Tanahashi SI, Takeuchi H, Ind. Eng. Chem. Res., 30, 2470 (1991)
  19. Lye GJ, Asenjo JA, Pyle DL, in Separation Biotechnology, Volume 3, Pyle DL, Ed., Royal Society of Chemistry, UK (1994)
  20. Kim H, Baek K, Kim BK, Shin HJ, Yang JW, Korean J. Chem. Eng., 25(2), 253 (2008)
  21. Chun BS, Wilkinson GT, Ind. Eng. Chem. Res., 34(12), 4371 (1995)
  22. Asai S, Hatanaka J, Uekawa Y, J. Chem. Eng. Jpn., 16, 463 (1963)
  23. Park SW, Chun BS, Lim GT, Korean Chem. Eng. Res., 28, 594 (1990)
  24. Schneider GM, in Supercritical Fluids Fundamentals for Application, Kiran E, Sengers JMHL, Eds., Kluwer Academic Publishers, Boston, USA (1994)