화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.2, 536-545, February, 2010
A modelling study on hydrolysis of whey lactose and stability of β-galactosidase
E-mail:
In the present study, the effect of process conditions on whey lactose hydrolysis and enzyme inactivation were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution by using β-galactosidase produced from Kluyveromyces marxianus lactis in a batch reactor system. The degree of lactose hydrolysis (%) and residual enzyme activity (%) against time were investigated versus lactose concentration, enzyme concentration, temperature and pH. The mathematical models were derived from the experimental data to show the effect of process conditions on lactose hydrolysis and residual enzyme activity (in the presence and absence of lactose). At the optimum process conditions obtained (50 g/L of lactose concentration, 1 mL/L of enzyme concentration, 37 ℃ of temperature and pH 6.5), 81% of lactose was hydrolyzed and enzyme lost its activity by 32%. The activation energy for hydrolysis reaction (EA) and the enzymatic inactivation energy (ED) were calculated as 52.7 kJ/mol and 96.7 kJ/mol. Mathematical models at various process conditions have been confirmed with the experimental results.
  1. Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 33(2-3), 199 (2003)
  2. Curcio S, Calabro V, Iorio G, J. Membr. Sci., 273(1-2), 129 (2006)
  3. Tanriseven A, Dogan S, Process Biochem., 38, 27 (2002)
  4. Ladero M, Santos A, Garcia JL, Carrascosa AV, Pessela BCC, Garcia-Ochoa F, Enzyme Microb. Technol., 30(3), 392 (2002)
  5. Santos A, Ladero M, Garcia-Ochoa F, Enzyme Microb. Technol., 22(7), 558 (1998)
  6. Novalin S, Neuhaus W, Kulbe KD, J. Biotechnol., 119, 212 (2005)
  7. Szczodrak J, J. Mol. Catal. B-Enzym, 10, 631 (2000)
  8. Al-Muftah AE, Abu-Reesh IM, Biochem. Eng. J., 27, 167 (2005)
  9. Burin L, Jouppila K, Roos YH, Kansikas J, Buera MP, Int. Dairy J., 14, 517 (2004)
  10. Kim JI, Choi DY, Row KH, Korean J. Chem. Eng., 20(3), 538 (2003)
  11. Jurado E, Camacho F, Luzon G, Vicaria JM, Enzyme Microb. Technol., 31(3), 300 (2002)
  12. Roy I, Gupta MN, Process Biochem., 39, 325 (2003)
  13. Ladero M, Santos A, Garcia JL, Garcia-Ochoa F, Enzyme Microb. Technol., 29(2-3), 181 (2001)
  14. Ladero M, Santos A, Garcia-Ochoa F, Enzyme Microb. Technol., 27(8), 583 (2000)
  15. Vasiljevic T, Jelen P, Innov. Food Sci. Emerg. Technol., 3, 175 (2002)
  16. Carrara CR, Rubiolo AC, Chem. Eng. J., 65, 93 (1997)
  17. Papayannakos N, Markas G, Kekos D, Chem. Eng. J., 52, B1 (1993)
  18. Yang ST, Okos MR, Biotechnol. Bioeng., 33, 873 (1989)
  19. Nielsen DA, Chou J, MacKrell AJ, Casadaban MJ, Steiner DF, Proc. Natl. Acad. Sci. USA, 80, 5198 (1983)
  20. Craven GR, Steers EJ, Anfinsen CB, J. Biol. Chem., 240, 2468 (1965)
  21. Mariotti MP, Yamanaka H, Araujo AR, Trevisan HC, Braz. Arch. Biol. Technol., 51, 1233 (2008)
  22. Li XM, Zhou QZK, Chen XD, Chem. Eng. Process., 46(5), 497 (2007)
  23. Bergmeyer HU, Bernt E, In determination with glucose oxidase and peroxsidase, In: Bergmeyer HU, editor, Methods of enzymatic analysis, 2nd ed., Academic Press, New York (1974)
  24. Toscano G, Pirozzi D, Maremonti M, Greco G, Biotechnol. Bioeng., 44(6), 682 (1994)
  25. Sadana A, Henley JM, Biotechnol. Bioeng., 30, 717 (1987)
  26. Di Serio M, Maturo C, De Alteriis E, Parascandola P, Tesser R, Santacesaria E, Catal. Today, 79-80, 333 (2003)
  27. Haider T, Husian Q, J. Sci. Food Agr., 87, 1278 (2007)
  28. Haider T, Husain Q, Chem. Eng. Process., 48(1), 576 (2009)
  29. Sener N, Apar DK, Ozbek B, Process Biochem., 41, 1498 (2006)