화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.163, No.1-3, 35-44, 2009
The effect of expansion ratio for creeping expansion flows of UCM fluids
A systematic numerical investigation on creeping flows in planar sudden expansions of viscoelastic fluids obeying the upper-convected Maxwell model is carried out to assess the combined effects of viscoelasticity, through the Deborah number, and expansion ratio (ER), which was varied between 1.25 and 32. At large expansion ratios (ER >= 4) the flow becomes dominated by the downstream duct size and appropriately normalized quantities tend to be independent of ER. The recirculation size and strength become decreasing functions of De, whereas the Couette correction (the normalized entry pressure drop due to the presence of the expansion) increases. At small ER (ER <= 3), however, no simple scaling laws are found and there is a complex interaction between De and ER leading to non-monotonic variations, with an initial decrease in the recirculation length at low Deborah numbers, followed by an enhancement as De increases. (C) 2009 Elsevier B.V. All rights reserved.