Journal of Physical Chemistry A, Vol.112, No.48, 12492-12497, 2008
Computational Study of the Reaction of CH2((XB1)-B-3) with CH3OH
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and the Weizmann-1 method (WIU). A total of five product channels and six transition states are found. The dominant mechanism is direct hydrogen abstraction, and the major product channel is CH3 + CH3O, involving a weak prereactive complex and a 7.4 kcal/mol barrier. The other hydrogen abstraction channel, CH3 + CH2OH, is less important even though it is more exothermic and involves a similar barrier height. The rate coefficients are predicted in the temperature range 200-3000 K. The tunneling effect and the hindered internal rotational freedoms play a key role in the reaction. Moreover, the reaction shows significant kinetic isotope effect.