Journal of Physical Chemistry A, Vol.113, No.13, 3009-3020, 2009
Structures and Properties of Electronically Excited Chromophores in Solution from the Polarizable Continuum Model Coupled to the Time-Dependent Density Functional Theory
This paper provides an overview of recent research activities concerning the quantum-mechanical description of structures and properties of electronically excited chromophores in solution. The focus of the paper is oil a specific approach to include solvent effects, namely the polarizable continuum model (PCM). Such a method represents an efficient strategy if coupled to proper quantum-mechanical descriptions Such as the time-dependent density functional theory (TDDFT). As a result, the description of molecules in the condensed phase can be extended to excited states still maintaining the computational efficiency and the physical reliability of the ground-state calculations. The most important theoretical and computational aspects of the coupling between PCM and TDDFF are presented and discussed together with an example of application to the study of the low-lying electronic excited states of push-pull chromophores in different solvents.