화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.113, No.16, 3765-3772, 2009
Substrate Driven Photochemistry of CdSe Quantum Dot Films: Charge Injection and Irreversible Transformations on Oxide Surfaces
The photochemical behavior of CdSe quantum dots anchored to different surfaces was probed through their deposition on glass, SiO2, and TiO2 films. Following visible light irradiation under ambient conditions, CdSe quantum dots deposited on semiconducting TiO2 surface degraded, where no such degradation was observed when deposited on inert SiO2 surface or glass. Fluorescence decay and transient absorption experiments confirmed that charge injection from excited CdSe into TiO2 occurs with an apparent rate constant of 5.62 x 10(8) s(-1) and is the primary event responsible for photodegradation. In the presence of air, injected electrons are scavenged by surface adsorbed oxygen leaving behind reactive holes which induce anodic corrosion of CdSe quantum dots. In a vacuum environment, minimal CdSe degradation was observed as electron scavenging by oxygen is replaced with charge recombination between injected electrons and holes in CdSe nanocrystals. Spectroscopic measurements presented in this study highlight the role of both substrate and medium in dictating the photochemistry of CdSe quantum dots.