화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.113, No.20, 5881-5887, 2009
Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure
The time scale and/or products of photoinduced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at 8 GPa. Ultrafast time-resolved infrared and steady-state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation Of CO2, an observed decomposition product, is complete within 30-40 mu s. Proof of principle time-resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.