화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.39, No.3, 677-681, 1994
Spectral and Inner-Outer Factorizations Through the Constrained Riccati Equation
The topic of the paper is the spectral factorization problem for a proper rational matrix function of constant rank, but not necessarily maximal, on the extended imaginary axis. The problem is reduced to the computation of the stabilizing solution of a so-called constrained Riccati equation. The proof of the main result suggests a Schur-like algorithm applied to a singular matrix pencil.