Journal of Physical Chemistry A, Vol.113, No.52, 15198-15205, 2009
Solvation Dynamics and Adsorption on Ag Hydrosols of Oxazole: A Raman and Computational Study
The interactions between oxazole and water or silver nanoparticles in aqueous dispersions have been studied with a computational approach based on ab initio molecular dynamics simulations, with the Car-Parrinello method, and density functional calculations in combination with Raman and surface enhanced Raman scattering (SERS) experiments. The solvation dynamics of oxazole in water allowed for the characterization of the hydrogen bond between water and solute, which has been shown to occur essentially through the nitrogen atom of the heterocyclic molecule. To mimic the solvation process or the adsorption on silver and interpreting the corresponding Raman and SERS spectra in aqueous solution or in Ag hydrosols, density functional calculations have been carried out on model systems made up by oxazole bound to water molecules or to positively charged silver clusters. Also, the chemisorption on Ag nanoparticles is found to occur by means of the nitrogen atom of oxazole interacting with the metal substrate.