화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.28, 8236-8240, 2008
Dual-focus fluorescence correlation spectroscopy of colloidal solutions: Influence of particle size
Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring diffusion coefficients of small fluorescent molecules at pico- to nanomolar concentrations. Recently, a modified version of FCS, dual-focus FCS (2fFCS), was introduced that significantly improves the reliability and accuracy of FCS measurements and allows for obtaining absolute values of diffusion coefficients without the need of referencing again a known standard. It was shown that 2fFCS gives excellent results for measuring the diffusion of small molecules. However, when measuring colloids or macromolecules, the size of these objects can no longer be neglected with respect to the excitation laser focus. Here, we analyze how 2fFCS data evaluation has to be modified for correctly taking into a count these finite size effects. We exemplify the new method of measuring the absolute size of polymeric particles with simple and complex fluorophore distributions.