화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.38, 11968-11975, 2008
On the role of solute solvation and excluded-volume interactions in coupled diffusion
Coupled diffusion is observed in multicomponent liquid mixtures in which strong thermodynamic interactions occur. This phenomenon is described by cross terms in the matrix of multicomponent diffusion coefficients. This paper reports a theoretical analysis on the relative role of thermodynamic factors and Onsager cross-coefficients on cross-diffusion coefficients relevant to ternary mixtures containing macromolecules or colloidal particles in the presence of salting-out conditions. A new model based on frictional coefficients between solvated solutes is reported. This model predicts that the Onsager cross-coefficient is negative and contributes significantly to cross-diffusion coefficients even at infinite dilution for solutes with a large difference in size. These predictions are consistent with recent experimental results. The role of preferential solvation and excluded-volume interactions on the thermodynamic factors are also examined. Excluded-volume interactions are introduced through the use of the McMillan-Mayer thermodynamic framework after emphasizing some important aspects of diffusion reference frames and thermodynamic driving forces. Finally, new expressions for cross-diffusion coefficients are proposed.