Journal of Physical Chemistry B, Vol.113, No.1, 131-137, 2009
Key Role of Proximal Water in Regulating Thermostable Proteins
Three homologous proteins with mesophilic, thermophilic and hyperthermophilic character have been studied via molecular dynamics simulations at four different temperatures in order to investigate how water controls thermostability. The water-exposed surface of the protein is shown to increase with the degree of thermophilicity, and the role of water in enhancing the protein internal flexibility and structural robustness is elucidated. The presence of water-water hydrogen bond clusters enveloping the macromolecule is shown to correlate with thermal robustness when going from the mesophilic to the hyperthermophilic variants. Our analysis indicates that essential contributions to thermostability stem from protein-water surface effects whereas the protein internal packing plays a minor role.