화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.113, No.4, 1162-1172, 2009
Influence of Preformed Asp23-Lys28 Salt Bridge on the Conformational Fluctuations of Monomers and Dimers of A beta Peptides with Implications for Rates of Fibril Formation
Recent experiments have shown that the congener A beta 1-40[D23-K28], in which the side chains of charged residues Asp23 and Lys28 are linked by a lactam bridge, forms amyloid fibrils that are structurally similar to the wild type (WT) A beta peptide, but at a rate that is nearly 1000 times faster. We used all atom molecular dynamics simulations in explicit water, and two force fields, of the WT dimer, a monomer with the lactam bridge (A beta(10-35)-lactam[D23-K28]), and the monomer and dimers with harmonically constrained D23-K28 salt bridge (A beta(10-35)[D23-K28]) to understand the origin of the enhanced fibril rate formation. The simulations show that the assembly competent fibril-like monomer (N*) structure, which is present among the conformations sampled by the isolated monomer, with strand conformations in the residues spanning the N and C termini and a bend involving residues D-23 VGSNKG(29), are populated to a much greater extent in A beta(10-35)[D23-K28] and A beta(10-35)-lactam[D23-K28] than in the WT, which has negligible probability of forming N*. The salt bridge in N* of A beta(10-35)[D23-K28], whose topology is similar to that found in the fibril, is hydrated. The reduction in the free energy barrier to fibril formation in A beta(10-35)[D23-K28] and in A beta(10-35)-lactam[D23-K28], compared to the WT, arises largely due to entropic restriction which enables the bend formation. A decrease in the entropy of the unfolded state and the lesser penalty for conformational rearrangement including the formation of the salt bridge in A beta peptides with D23-K28 constraint results in a reduction in the kinetic barrier in the A beta(1-40)-lactam[D23-K28] congener compared to the WT. The decrease in the barrier, which is related to the free energy cost of forming a bend, is estimated to be in the range (4-7)k(B)T. Although a number of factors determine the growth of fibrils, the decrease in the free energy barrier, relative to the WT, to N* formation is a major factor in the rate enhancement in the fibril formation of A beta(1-40)[D23-K28] congener. Qualitatively similar results were obtained using simulations of A beta(9-40) peptides and various constructs related to the A beta(10-35) systems that were probed using OPLS and CHARMM force fields. We hypothesize that mutations or other constraints that preferentially enhance the population of the N* species would speed up aggregation rates. Conversely, ligands that lock it in the fibril-like N* structure would prevent amyloid formation.